LEVEL2_프로그래머스_예상 대진표

Written on August 15, 2020

문제

△△ 게임대회가 개최되었습니다. 이 대회는 N명이 참가하고, 토너먼트 형식으로 진행됩니다. N명의 참가자는 각각 1부터 N번을 차례대로 배정받습니다. 그리고, 1번↔2번, 3번↔4번, … , N-1번↔N번의 참가자끼리 게임을 진행합니다. 각 게임에서 이긴 사람은 다음 라운드에 진출할 수 있습니다. 이때, 다음 라운드에 진출할 참가자의 번호는 다시 1번부터 N/2번을 차례대로 배정받습니다. 만약 1번↔2번 끼리 겨루는 게임에서 2번이 승리했다면 다음 라운드에서 1번을 부여받고, 3번↔4번에서 겨루는 게임에서 3번이 승리했다면 다음 라운드에서 2번을 부여받게 됩니다. 게임은 최종 한 명이 남을 때까지 진행됩니다.


이때, 처음 라운드에서 A번을 가진 참가자는 경쟁자로 생각하는 B번 참가자와 몇 번째 라운드에서 만나는지 궁금해졌습니다. 게임 참가자 수 N, 참가자 번호 A, 경쟁자 번호 B가 함수 solution의 매개변수로 주어질 때, 처음 라운드에서 A번을 가진 참가자는 경쟁자로 생각하는 B번 참가자와 몇 번째 라운드에서 만나는지 return 하는 solution 함수를 완성해 주세요. 단, A번 참가자와 B번 참가자는 서로 붙게 되기 전까지 항상 이긴다고 가정합니다.

제한사항

  • N : 21 이상 220 이하인 자연수 (2의 지수 승으로 주어지므로 부전승은 발생하지 않습니다.)
  • A, B : N 이하인 자연수 (단, A ≠ B 입니다.)

입출력 예

N A B answer
8 4 7 3

입출력 예 설명

첫 번째 라운드에서 4번 참가자는 3번 참가자와 붙게 되고, 7번 참가자는 8번 참가자와 붙게 됩니다. 항상 이긴다고 가정했으므로 4번 참가자는 다음 라운드에서 2번이 되고, 7번 참가자는 4번이 됩니다. 두 번째 라운드에서 2번은 1번과 붙게 되고, 4번은 3번과 붙게 됩니다. 항상 이긴다고 가정했으므로 2번은 다음 라운드에서 1번이 되고, 4번은 2번이 됩니다. 세 번째 라운드에서 1번과 2번으로 두 참가자가 붙게 되므로 3을 return 하면 됩니다.

풀이

function solution(n,a,b)
{
    let g, l
    if(a > b){
        g = a;
        l = b
    } else {
        g = b;
        l = a;
    }
    let answer = 1; 
    for(let i = 0; i < Math.log2(n); i++){
        if(l % 2 === 1 && l + 1 === g){
            break;
        }
        g = Math.ceil(g/2);
        l = Math.ceil(l/2);
        answer++;
    }
    return answer;
}


문제바로가기

예상 대진표

👩🏻‍💻 배우는 것을 즐기는 프론트엔드 개발자 입니다
부족한 블로그에 방문해 주셔서 감사합니다 🙇🏻‍♀️

in the process of becoming the best version of myself